GBT/Argus Observations of Molecular Gas in the Inner Regions of IC 342

Author:

Li 李 Jialu 佳璐ORCID,Harris Andrew I.ORCID,Rosolowsky ErikORCID,Kepley Amanda A.ORCID,Frayer DavidORCID,Bolatto Alberto D.ORCID,Leroy Adam K.ORCID,Donovan Meyer JenniferORCID,Church Sarah,Gundersen Joshua OttORCID,Cleary KieranORCID,

Abstract

Abstract We report observations of the ground state transitions of 12CO, 13CO, C18O, HCN, and HCO+ at 88–115 GHz in the inner region of the nearby galaxy IC 342. These data were obtained with the 16 pixel spectroscopic focal plane array Argus on the 100 m Robert C. Byrd Green Bank Telescope (GBT) at 6″–9″ resolution. In the nuclear bar region, the intensity distributions of 12CO(1–0) and 13CO(1–0) emission trace moderate densities, and differ from the dense gas distributions sampled in C18O(1–0), HCN(1–0), and HCO+(1–0). We observe a constant HCN(1–0)-to-HCO+(1–0) ratio of 1.2 ± 0.1 across the whole ∼1 kpc bar. This indicates that the HCN(1–0) and HCO+(1–0) lines have intermediate optical depth, and that the corresponding n H 2 of the gas producing the emission is of order 104.5−6 cm−3. We show that HCO+(1–0) is thermalized and HCN(1–0) is close to thermalization. The very tight correlation between the HCN(1–0) and HCO+(1–0) intensities across the 1 kpc bar suggests that this ratio is more sensitive to the relative abundance of the two species than to the gas density. We confirm an angular offset (∼10″) between the spatial distribution of molecular gas and the star formation sites. Finally, we find a breakdown of the L IR L HCN correlation at high spatial resolution due to the effect of incomplete sampling of star-forming regions by HCN emission in IC 342. The scatter of the L IR L HCN relation decreases as the spatial scale increases from 10″ to 30″ (170–510 pc), and is comparable to the scatter of the global relation at a scale of 340 pc.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3