Author:
Kopyev A. V.,Kiselev A. M.,Il’yn A. S.,Sirota V. A.,Zybin K. P.
Abstract
Abstract
We consider a natural generalization of the Kazantsev–Kraichnan model for a small-scale turbulent dynamo. This generalization takes into account the statistical time asymmetry of a turbulent flow and thus allows one to describe velocity fields with energy cascade. For three-dimensional velocity fields, a generalized Kazantsev equation is derived, and the evolution of the second-order magnetic field correlator is investigated for large but finite magnetic Prandtl numbers. It is shown that as Pr
m
→ ∞, the growth increment tends to the limit known from the T-exponential (Lagrangian deformation) method. Magnetic field generation is shown to be weaker than that in the Gaussian velocity field for any direction of the energy cascade and essentially depends on the Prandtl number.
Funder
Russian Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献