Resolving the Mechanical and Radiative Feedback in J1044+0353 with Keck Cosmic Web Imager Spectral Mapping

Author:

Martin Crystal L.ORCID,Peng ZixuanORCID,Li Yuan

Abstract

Abstract We present integral field spectroscopy toward and around J1044+0353, a rapidly growing, low-metallicity galaxy that produces extreme [O iii] line emission. A new map of the O32 flux ratio reveals a density-bounded ionization cone emerging from the starburst. The interaction of the hydrogen-ionizing radiation, produced by the very young starburst, with a cavity previously carved out by a galactic outflow, whose apex lies well outside the starburst region, determines the pathway for global Lyman continuum (LyC) escape. In the region within a few hundred parsecs of the young starburst, we demonstrate that superbubble breakthrough and blowout contribute distinct components to the [O iii] line profile: broad and very broad emission line wings, respectively. We draw attention to the large [O iii] luminosity of the broad component and argue that this emission comes from photoionized, superbubble shells rather than a galactic wind as is often assumed. The spatially resolved He ii λ4686 nebula appears to be photoionized by young star clusters. Stellar wind emission from these stars is likely the source of line wings detected on the He ii line profile. This broader He ii component indicates slow stellar winds, consistent with an increase in stellar rotation (and a decrease in effective escape speed) at the metallicity of J1044+0353. At least in J1044+0353, the recent star formation history plays a critical role in generating a global pathway for LyC escape, and the anisotropic escape would likely be missed by direct observations of the LyC.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3