Multiple Populations in Low-mass Globular Clusters: Eridanus

Author:

Wang YueORCID,Tang BaitianORCID,Li ChengyuanORCID,Baumgardt HolgerORCID,Muñoz Ricardo R.,Fernández-Trincado José G.,Geisler DougORCID,Fang Yuanqing

Abstract

Abstract Multiple populations (MPs), characterized by variations in light elemental abundances, have been found in stellar clusters in the Milky Way, Magellanic Clouds, as well as several other dwarf galaxies. Based on a large number of observations, mass has been suggested to be a key parameter affecting the presence and appearance of MPs in stellar clusters. To further investigate the existence of MPs in low-mass clusters and explore the mass threshold for the formation of MPs, we carried out a project studying the composition of the stellar population in several low-mass Galactic globular clusters. Here we present our study on the cluster Eridanus. With blue-UV low-resolution spectra obtained with the OSIRIS/Multi-object spectrograph on the Gran Telescopio Canarias, we computed the spectral indices of CH and CN for a sample of giant stars and derived their carbon and nitrogen abundances using model spectra. A significant dispersion in the initial surface abundance of nitrogen was found in the sample, indicating the existence of MPs in Eridanus. Inspecting the age–initial mass distribution of in situ clusters with MPs, we find a slight trend that initial mass increases with increasing age, and the lowest initial masses of log M initial ∼ 4.98 and 5.26 are found at the young and old end, respectively, which might provide a rough reference for the mass threshold for clusters to form MPs. However, more observations of clusters with low initial masses are still necessary before any firm conclusion can be drawn.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3