Abstract
Abstract
The photodecomposition of methanimine (CH2NH) in the interstellar medium through several possible pathways is investigated by means of high-level multireference configuration interaction ab initio calculations. Among these pathways are photodissociation pathways involving hydrogen-atom elimination from both the CH2 and NH groups, and fragmentation into CH2 and NH. Potential-energy curves for the ground and several excited electronic states, as well as nonadiabatic couplings between them, are calculated. Possible dissociation mechanisms are discussed for the different pathways. It is found that the minimum excitation energy required for methanimine dissociation is above 7 eV. By using a two-dimensional representation of methanimine, CH2NH → CHNH2 isomerization is explored as an additional methanimine decomposition pathway. Hydrogen-atom elimination from the CH2 group is also investigated along the isomerization pathway. The results show that the isomerization proceeds by overcoming a transition state that in the first two excited states would require excitation energies similar to or somewhat lower than the typical minimum energies needed for breaking the molecule through the fragmentation pathways. Therefore, CH2NH → CHNH2 isomerization can effectively contribute to methanimine decomposition, competing efficiently with the photodissociation pathways. The radiation content present in the interstellar medium makes possible the occurrence of all the pathways studied.
Funder
Ministerio de Ciencia e Innovación
National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
I-COOP program from CSIC
European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Award
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献