On the Characterization of GJ 504: A Magnetically Active Planet-host Star Observed by the Transiting Exoplanet Survey Satellite (TESS)

Author:

Di Mauro Maria PiaORCID,Reda RaffaeleORCID,Mathur SavitaORCID,García Rafael A.ORCID,Buzasi Derek L.ORCID,Corsaro EnricoORCID,Benomar OthmanORCID,González Cuesta LucíaORCID,Stassun Keivan G.ORCID,Benatti SerenaORCID,D’Orazi ValentinaORCID,Giovannelli LucaORCID,Mesa DinoORCID,Nardetto NicolasORCID

Abstract

Abstract We present the results of the analysis of the photometric data collected in long- and short-cadence mode by the Transiting Exoplanet Survey Satellite for GJ 504, a well-studied planet-hosting solar-like star, whose fundamental parameters have been largely debated during the last decade. Several attempts have been made by the present authors to isolate the oscillatory properties expected on this main-sequence star, but we did not find any presence of solar-like pulsations. The suppression of the amplitude of the acoustic modes can be explained by the high level of magnetic activity revealed for this target, not only by the study of the photometric light curve but also by the analysis of three decades of available Mount Wilson spectroscopic data. In particular, our measurements of the stellar rotational period P rot ≃ 3.4 days and of the main principal magnetic cycle of ≃12 yr confirm previous findings and allow us to locate this star in the early main-sequence phase of its evolution during which the chromospheric activity is dominated by the superposition of several cycles before the transition to the phase of the magnetic-braking shutdown with the subsequent decrease of the magnetic activity.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new catalog of magnetically active solar-like oscillators;Astronomy & Astrophysics;2024-03

2. Hubble Asteroid Hunter;Astronomy & Astrophysics;2024-03

3. The exoplanetary magnetosphere extension in Sun-like stars based on the solar wind–solar UV relation;Monthly Notices of the Royal Astronomical Society;2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3