Abstract
Abstract
We introduce the Galaxy Replacement Technique (GRT) that allows us to model tidal stripping of galaxies with very high mass (m
star = 5.4 × 104
M
⊙
h
−1) and high spatial resolution (10 pc h
−1), in a fully cosmological context, using an efficient and fast technique. The technique works by replacing multiple low-resolution dark-matter (DM) halos in the base cosmological simulation with high-resolution models, including a DM halo and stellar disk. We apply the method to follow the hierarchical buildup of a cluster since redshift ∼8 to now, through the hierarchical accretion of galaxies, individually or in substructures such as galaxy groups. We find we can successfully reproduce the observed total stellar masses of observed clusters since redshift ∼1. The high resolution allows us to accurately resolve the tidal stripping process and well describe the formation of ultralow surface brightness features in the cluster (μ
V
< 32 mag arcsec−2) such as the intracluster light (ICL), shells, and tidal streams. We measure the evolution of the fraction of light in the ICL and brightest cluster galaxy using several different methods. While their broad response to the cluster-mass growth history is similar, the methods show systematic differences, meaning we must be careful when comparing studies that use distinct methods. The GRT represents a powerful new tool for studying tidal effects on galaxies and exploring the formation channels of the ICL in a fully cosmological context and with large samples of simulated groups and clusters.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献