Abstract
Abstract
We present the spatially resolved absolute brightness of the Fe x, Fe xi, and Fe xiv visible coronal emission lines from 1.08 to 3.4 R
⊙, observed during the 2019 July 2 total solar eclipse (TSE). The morphology of the corona was typical of solar minimum, with a dipole field dominance showcased by large polar coronal holes and a broad equatorial streamer belt. The Fe xi line is found to be the brightest, followed by Fe x and Fe xiv (in disk B
⊙ units). All lines had brightness variations between streamers and coronal holes, where Fe xiv exhibited the largest variation. However, Fe x remained surprisingly uniform with latitude. The Fe line brightnesses are used to infer the relative ionic abundances and line-of-sight-averaged electron temperature (T
e
) throughout the corona, yielding values from 1.25 to 1.4 MK in coronal holes and up to 1.65 MK in the core of streamers. The line brightnesses and inferred T
e
values are then quantitatively compared to the Predictive Science Inc. magnetohydrodynamic model prediction for this TSE. The MHD model predicted the Fe lines rather well in general, while the forward-modeled line ratios slightly underestimated the observationally inferred T
e
within 5%–10% averaged over the entire corona. Larger discrepancies in the polar coronal holes may point to insufficient heating and/or other limitations in the approach. These comparisons highlight the importance of TSE observations for constraining models of the corona and solar wind formation.
Funder
National Science Foundation
NASA
Grant Agency of Brno University of Technology
NASA Heliophysics Supporting Research and Living With a Star
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献