A SUBLIME 3D Model for Cometary Coma Emission: The Hypervolatile-rich Comet C/2016 R2 (PanSTARRS)

Author:

Cordiner M. A.ORCID,Coulson I. M.ORCID,Garcia-Berrios E.ORCID,Qi C.ORCID,Lique F.ORCID,Zołtowski M.,de Val-Borro M.ORCID,Kuan Y.-J.ORCID,Ip W.-H.,Mairs S.ORCID,Roth N. X.ORCID,Charnley S. B.ORCID,Milam S. N.ORCID,Tseng W.-LORCID,Chuang Y.-LORCID

Abstract

Abstract The coma of comet C/2016 R2 (PanSTARRS) is one of the most chemically peculiar ever observed, in particular due to its extremely high CO/H2O and N 2 + /H2O ratios, and unusual trace volatile abundances. However, the complex shape of its CO emission lines, as well as uncertainties in the coma structure and excitation, has lead to ambiguities in the total CO production rate. We performed high-resolution, spatially, spectrally, and temporally resolved CO observations using the James Clerk Maxwell Telescope and Submillimeter Array to elucidate the outgassing behavior of C/2016 R2. Results are analyzed using a new, time-dependent, three-dimensional radiative transfer code (SUBlimating gases in LIME; SUBLIME, based on the open-source version of the LIne Modeling Engine), incorporating for the first time, accurate state-to-state collisional rate coefficients for the CO–CO system. The total CO production rate was found to be in the range of (3.8 − 7.6) × 1028 s−1 between 2018 January 13 and February 1 (at r H = 2.8–2.9 au), with a mean value of (5.3 ± 0.6) × 1028 s−1. The emission is concentrated in a near-sunward jet, with a half-opening angle of ∼62° and an outflow velocity of 0.51 ± 0.01 km s−1, compared to 0.25 ± 0.01 km s−1 in the ambient (and nightside) coma. Evidence was also found for an extended source of CO emission, possibly due to icy grain sublimation around 1.2 × 105 km from the nucleus. Based on the coma molecular abundances, we propose that the nucleus ices of C/2016 R2 can be divided into a rapidly sublimating apolar phase, rich in CO, CO2, N2, and CH3OH, and a predominantly frozen (or less abundant), polar phase containing more H2O, CH4, H2CO, and HCN.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3