Orbital Period Variations in HT Cas: Evidence for Additional Angular Momentum Loss and a High-eccentricity Giant Planet

Author:

Han Z.-TORCID,Qian S.-B,Han Q.-W,Zang L.,Soonthornthum B.,Li L.-J,Zhu L.-Y.ORCID,Liu W.,Fernández Lajús E.,Dai Z.-B,Na W.-W

Abstract

Abstract We present a timing study of the short-period eclipsing cataclysmic variable (CV) HT Cas. Based on new eclipse times derived from our photometric monitoring and archival optical data, combined with historical timings, spanning ∼42 yr, we detect a secular decrease in the orbital period at a rate of P ̇ = 1.32 × 10 12 ss 1 and a cyclic period wiggle with an amplitude of 79.3 s and a period of 30.28 yr. We find that neither gravitational radiation nor magnetic braking can explain the observed decrease rate, suggesting the presence of additional angular momentum loss (AML). The empirical consequential AML (eCAML) model developed by Schreiber et al. can well match the observed orbital decay in HT Cas, and the physical mechanism for eCAML is most likely attributable to the frictional AML following nova eruptions. As for the cyclic variation, the best explanation is the influence of an unseen companion in orbit around the binary. The derived orbital parameters reveal that the hypothetical third body could be a giant planet with mass of M 3 ≃ 14M Jup that is moving on a highly eccentric orbit (e = 0.82). Taken together the results of the present study suggest that HT Cas is a unique triple system containing a high-eccentricity giant planet and it has the potential to become an ideal laboratory in which to test models of CV evolution.

Funder

NSFC ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3