Estimation of the Full-sky Power Spectrum between Intermediate and Large Angular Scales from Partial-sky CMB Anisotropies Using an Artificial Neural Network

Author:

Pal SrikantaORCID,Chanda PallavORCID,Saha RajibORCID

Abstract

Abstract Reliable extraction of cosmological information from observed cosmic microwave background (CMB) maps may require removal of strongly foreground-contaminated regions from the analysis. In this paper, we employ an artificial neural network (ANN) to predict the full-sky CMB angular power spectrum between intermediate and large angular scales from the partial-sky spectrum obtained from a masked CMB temperature anisotropy map. We use a simple ANN architecture with one hidden layer containing 895 neurons. Using 1.2 × 105 training samples of full-sky and corresponding partial-sky CMB angular power spectra at HEALPix pixel resolution parameter N side = 256, we show that the spectrum predicted by our ANN agrees well with the target spectrum at each realization for the multipole range 2 ≤ l ≤ 512. The predicted spectra are statistically unbiased, and they preserve the cosmic variance accurately. Statistically, the differences between the mean predicted and underlying theoretical spectra are within approximately 3σ. Moreover, the probability densities obtained from predicted angular power spectra agree very well with those obtained from “actual” full-sky CMB angular power spectra for each multipole. Interestingly, our work shows that the significant correlations in input cut-sky spectra due to mode–mode coupling introduced on the partial sky are effectively removed, since the ANN learns the hidden pattern between the partial- and full-sky spectra preserving all of the statistical properties. The excellent agreement of statistical properties between the predicted and the ground truth demonstrates the importance of using artificial intelligence systems in cosmological analysis more widely.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3