Photoelectron Butterfly Pitch-angle Distributions in the Martian Ionosphere Based on MAVEN Observations

Author:

Luo QiongORCID,Cao YutianORCID,Ni BinbinORCID,Cui JunORCID,Cao XingORCID,Gu XudongORCID

Abstract

Abstract Using pitch-angle-resolved electron fluxes recorded by the Mars Atmosphere and Volatile Evolution spacecraft over 5 yr, we present a detailed analysis of the occurrence patterns of photoelectron butterfly pitch-angle distributions (PADs) in the Martian ionosphere. Statistical analysis indicates that Martian photoelectron butterfly PADs favorably occur near the moderate crustal magnetic fields with a strength of 10–30 nT on the dayside and 10–15 nT on the nightside. The nightside occurrence rates are much higher. Furthermore, dayside butterfly PADs prefer to occur near the vertical magnetic field lines in the ionosphere, and the significant day-to-night transport of photoelectrons evades the nightside strongest magnetic anomaly regions. These features strongly support the idea that Martian photoelectron butterfly PADs are more likely to occur in eclipse or near the terminator and that they mainly form due to the adiabatic evolution of photoelectrons that transport along the closed cross-terminator magnetic field lines. Despite the negligible energy dependence in the darkness, the occurrence rate of dayside butterfly PADs observed at higher altitudes and near the subsolar region increases with energy, presumably related to the increased proportion of electrons from the solar wind when measured at relatively higher electron energies, which, however, is limitedly understood and deserves future investigation. Our comprehensive observations suggest the diverse influence of Martian magnetic topology on the ionospheric plasma in different spatial regions, and, in turn, analysis of their influence allows us a better understanding of the intricate Martian global magnetic system.

Funder

National Natural Science Foundation of China

B-type Strategic Priority Program of the Chinese Academy of Sciences

Pre-research Projects on Civil Aerospace Technologies

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3