A Database of Magnetic and Thermodynamic Properties of Confined and Eruptive Solar Flares

Author:

Kazachenko Maria D.ORCID

Abstract

Abstract Solar flares sometimes lead to coronal mass ejections that directly affect Earth's environment. However, a large fraction of flares, including on solar-type stars, are confined flares. What are the differences in physical properties between confined and eruptive flares? For the first time, we quantify the thermodynamic and magnetic properties of hundreds of confined and eruptive flares of GOES class C5.0 and above, 480 flares in total. We first analyze large flares of GOES class M1.0 and above observed by the Solar Dynamics Observatory, 216 flares in total, including 103 eruptive and 113 confined flares, from 2010 until 2016 April; we then look at the entire data set of 480 flares above class C5.0. We compare GOES X-ray thermodynamic flare properties, including peak temperature and emission measure, and active-region (AR) and flare-ribbon magnetic field properties, including reconnected magnetic flux and peak reconnection rate. We find that for fixed peak X-ray flux, confined and eruptive flares have similar reconnection fluxes; however, for fixed peak X-ray flux confined flares have on average larger peak magnetic reconnection rates, are more compact, and occur in larger ARs than eruptive flares. These findings suggest that confined flares are caused by reconnection between more compact, stronger, lower-lying magnetic fields in larger ARs that reorganizes a smaller fraction of these regions’ fields. This reconnection proceeds at faster rates and ends earlier, potentially leading to more efficient flare particle acceleration in confined flares.

Funder

NASA ECIP

NASA

NSF CAREER

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3