Oceanographic Considerations for Exoplanet Life Detection

Author:

Olson Stephanie L.ORCID,Jansen Malte,Abbot Dorian S.ORCID

Abstract

Abstract Liquid water oceans are at the center of our search for life on exoplanets because water is a strict requirement for life as we know it. However, oceans are dynamic habitats—and some oceans may be better hosts for life than others. In Earth’s ocean, circulation transports essential nutrients such as phosphate and is a first-order control on the distribution and productivity of life. Of particular importance is upward flow from the dark depths of the ocean in response to wind-driven divergence in surface layers. This “upwelling” returns essential nutrients that tend to accumulate at depth via sinking of organic particulates back to the sunlit regions where photosynthetic life thrives. Ocean dynamics are likely to impose constraints on the activity and atmospheric expression of photosynthetic life in exo-oceans as well, but we lack an understanding of how ocean dynamics may differ on other planets. We address this issue by exploring the sensitivity of ocean dynamics to a suite of planetary parameters using ROCKE-3D, a fully coupled ocean–atmosphere general circulation model. Our results suggest that planets that rotate slower and have higher surface pressure than Earth may be the most attractive targets for remote life detection because upwelling is enhanced under these conditions, resulting in greater nutrient supply to the surface biosphere. Seasonal deepening of the mixed layer on high-obliquity planets may also enhance nutrient replenishment from depth into the surface mixed layer. Efficient nutrient recycling favors greater biological activity, more biosignature production, and thus more detectable life. More generally, our results demonstrate the importance of considering oceanographic phenomena for exoplanet life detection and motivate future interdisciplinary contributions to the emerging field of exo-oceanography.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3