The Merging of a Coronal Dimming and the Southern Polar Coronal Hole

Author:

Ngampoopun NawinORCID,Long David M.ORCID,Baker DeborahORCID,Green Lucie M.ORCID,Yardley Stephanie L.ORCID,James Alexander W.ORCID,To Andy S. H.ORCID

Abstract

Abstract We report on the merging between the southern polar coronal hole and an adjacent coronal dimming induced by a coronal mass ejection on 2022 March 18, resulting in the merged region persisting for at least 72 hr. We use remote sensing data from multiple co-observing spacecraft to understand the physical processes during this merging event. The evolution of the merger is examined using Extreme-UltraViolet (EUV) images obtained from the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory and Extreme Ultraviolet Imager, which is on board the Solar Orbiter spacecraft. The plasma dynamics are quantified using spectroscopic data obtained from the EUV Imaging Spectrometer on board Hinode. The photospheric magnetograms from the Helioseismic and Magnetic Imager are used to derive the magnetic field properties. To our knowledge, this work is the first spectroscopical analysis of the merging of two open-field structures. We find that the coronal hole and the coronal dimming become indistinguishable after the merging. The upflow speeds inside the coronal dimming become more similar to that of a coronal hole, with a mixture of plasma upflows and downflows observable after the merging. The brightening of the bright points and the appearance of coronal jets inside the merged region further imply ongoing reconnection processes. We propose that component reconnection between the coronal hole and coronal dimming fields plays an important role during this merging event because the footpoint switching resulting from the reconnection allows the coronal dimming to intrude onto the boundary of the southern polar coronal hole.

Funder

UKRI ∣ Science and Technology Facilities Council

UKRI ∣ Natural Environment Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3