Abstract
Abstract
The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is an untargeted spectroscopic survey that aims to measure the expansion rate of the universe at z ∼ 2.4 to 1% precision for both H(z) and D
A
(z). HETDEX is in the process of mapping in excess of one million Lyα emitting (LAE) galaxies and a similar number of lower-z galaxies as a tracer of the large-scale structure. The success of the measurement is predicated on the post-observation separation of galaxies with Lyα emission from the lower-z interloping galaxies, primarily [O ii], with low contamination and high recovery rates. The Emission Line eXplorer (ELiXer) is the principal classification tool for HETDEX, providing a tunable balance between contamination and completeness as dictated by science needs. By combining multiple selection criteria, ELiXer improves upon the 20 Å rest-frame equivalent width cut commonly used to distinguish LAEs from lower-z [O ii] emitting galaxies. Despite a spectral resolving power, R ∼ 800, that cannot resolve the [O ii] doublet, we demonstrate the ability to distinguish LAEs from foreground galaxies with 98.1% accuracy. We estimate a contamination rate of Lyα by [O ii] of 1.2% and a Lyα recovery rate of 99.1% using the default ELiXer configuration. These rates meet the HETDEX science requirements.
Funder
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献