Vetting the “Lobster” Diagram: Searching for Unseen Companions in Wide Binaries Using NASA Space Exoplanet Missions

Author:

Hartman Zachary D.ORCID,Lépine SébastienORCID,Medan IlijaORCID

Abstract

Abstract Over the past decade, the number of known wide-binary systems has expanded exponentially, thanks to the release of data from the Gaia Mission. Some of these wide-binary systems are actually higher-order multiples, where one of the components is an unresolved binary itself. One way to search for these systems is by identifying the overluminous components in the systems. In this study, we examine 4947 K+K wide-binary pairs from the SUPERWIDE catalog, and quantify the relative colors and luminosities of the components to find evidence for additional unresolved companions. The method is best illustrated in a graph that we call the “Lobster” diagram. To confirm that the identified overluminous components are close binary systems, we cross-match our wide binaries with the TESS, K2, and Kepler archives, and search for signs of eclipses and fast stellar rotation modulation in the light curves. We find that 78.9% ± 20.7% of the wide binaries that contain an eclipsing system are identified as overluminous in the “Lobster” diagram, and that 73.5% ± 12.4% of the wide binaries that contain a component showing fast rotation (P < 5 days) also show an overluminous component. From these results, we calculate a revised lower limit on the higher-order multiplicity fraction for K+K wide binaries of 40.0% ± 1.6%. We also examine the higher-order multiplicity fraction as a function of projected physical separation and metallicity. The fraction is unusually constant as a function of projected physical separation, while we see no statistically significant evidence that the fraction varies with metallicity.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3