Evolutions of Young Type Ia Supernova Remnants with Two Initial Density Profiles in a Turbulent Medium

Author:

Bao Biwen,Peng Qiyong,Yang ChuyuanORCID,Zhang Li

Abstract

Abstract The expansion index and relative contact discontinuity positions of young type Ia supernova remnants (SNRs) evolving in a turbulent medium are investigated via implementing two-dimensional cylindrical magnetohydrodynamic simulations. In our simulations, two kinds of initial ejecta density profiles are considered: a power-law (PL) profile and an exponential (Exp) profile; large-scale density and magnetic field fluctuations are calculated and mapped into the computational domain before the simulations; the back reaction of the accelerated particles is mimicked through a time-dependent effective adiabatic index γ eff(n, t). Our simulation results reveal that the density distributions and magnetic field structures have similar results for both initial profiles. Concerning the expansion index, both the PL and Exp profiles exhibit significant azimuthal variations along the remnant periphery, while the Exp profile manifests itself in a quick path down to the Sedov value as time proceeds. The derived expansion index distributions with both initial profiles are compatible with observations of two typical young type Ia SNRs: SN 1006 and Tycho. As for the relative contact discontinuity positions, when γ eff(n, t) works, the derived profiles of both scenarios are globally compatible with the observations despite some deviations. Besides, there are no obvious ejecta protrusions beyond the forward shock, with a lowest derived ratio reaching ∼1.01–1.02 for both initial profiles. Moreover, for purposes of comparison, we have also considered two supplementary scenarios: (1) the aforementioned two density profiles expanding in a homogeneous medium, and (2) a uniform ejecta profile evolving in a turbulent medium.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3