Cloudy and Cloud-free Thermal Phase Curves with PICASO: Applications to WASP-43b

Author:

Robbins-Blanch NinaORCID,Kataria TiffanyORCID,Batalha Natasha E.ORCID,Adams Danica J.ORCID

Abstract

Abstract We present new functionality within PICASO, a state-of-the-art radiative transfer model for exoplanet and brown dwarf atmospheres, by developing a new pipeline that computes phase-resolved thermal emission (thermal phase curves) from three-dimensional (3D) models. Because PICASO is coupled to Virga, an open-source cloud code, we are able to produce cloudy phase curves with different sedimentation efficiencies (f sed) and cloud condensate species. We present the first application of this new algorithm to hot Jupiter WASP-43b. Previous studies of the thermal emission of WASP-43b from Kataria et al. found good agreement between cloud-free models and dayside thermal emission, but an overestimation of the nightside flux, for which clouds have been suggested as a possible explanation. We use the temperature and vertical wind structure from the cloud-free 3D general circulation models of Kataria et al. and post-process it using PICASO, assuming that clouds form and affect the spectra. We compare our models to results from Kataria et al., including Hubble Space Telescope Wide-Field Camera 3 (WFC3) observations of WASP-43b from Stevenson et al. In addition, we compute phase curves for Spitzer at 3.6 and 4.5 μm and compare them to observations from Stevenson et al. We are able to closely recover the cloud-free results, even though PICASO utilizes a coarse spatial grid. We find that cloudy phase curves provide much better agreement with the WFC3 and Spitzer nightside data, while still closely matching the dayside emission. This work provides the community with a convenient, user-friendly tool to interpret phase-resolved observations of exoplanet atmospheres using 3D models.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3