Revisiting the Revisited Palmer Consensus: New Insights from Jovian Electron Transport

Author:

Engelbrecht N. EugeneORCID,Vogt AdrianORCID,Herbst KonstantinORCID,Du Toit Strauss R.ORCID,Burger R. A.ORCID

Abstract

Abstract Novel insights into the behavior of the diffusion coefficients of charged particles in the inner heliosphere are of great importance to any study of the transport of these particles and are especially relevant with regard to the transport of low-energy electrons. The present study undertakes an exhaustive investigation into the diffusion parameters needed to reproduce low-energy electron intensities as observed at Earth, using a state-of-the-art 3D cosmic ray transport code. To this end, the transport of Jovian electrons is considered, as Jupiter represents the predominant source of these particles in the inner heliosphere, and because a careful comparison of model results with observations taken during periods of good and poor magnetic connectivity between Earth and Jupiter allows for conclusions to be drawn as to both parallel and perpendicular diffusion coefficients. This study then compares these results with the predictions made by various scattering theories. Best-fit parameters for parallel and perpendicular mean free paths at 1 au fall reasonably well within the span of observational values reported by previous studies, but best-fit radial and rigidity dependences vary widely. However, a large number of diffusion parameters lead to reasonable to-good fits to observations, and it is argued that considerable caution must be exercised when comparing theoretical results for diffusion coefficients with diffusion parameters calculated from particle transport studies.

Funder

National Research Foundation

Horizon 2020

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3