EIGER. III. JWST/NIRCam Observations of the Ultraluminous High-redshift Quasar J0100+2802

Author:

Eilers Anna-ChristinaORCID,Simcoe Robert A.ORCID,Yue MinghaoORCID,Mackenzie RuariORCID,Matthee JorrytORCID,Ďurovčíková DominikaORCID,Kashino DaichiORCID,Bordoloi RongmonORCID,Lilly Simon J.ORCID

Abstract

Abstract We present the first rest-frame optical spectrum of a high-redshift quasar observed with JWST/NIRCam in Wide Field Slitless mode. The observed quasar, J0100+2802, is the most luminous quasar known at z > 6. We measure the mass of the central supermassive black hole (SMBH) by means of the rest-frame optical H β emission line, and find consistent mass measurements of the quasar’s SMBH of M ≈ 1010 M when compared to the estimates based on the properties of rest-frame UV emission lines C iv and Mg ii, which are accessible from ground-based observatories. To this end, we also present a newly reduced rest-frame UV spectrum of the quasar observed with X-Shooter/Very Large Telescope (VLT) and FIRE/Magellan for a total of 16.8 hr. We readdress the question whether this ultraluminous quasar could be effected by strong gravitational lensing making use of the diffraction limited NIRCam images in three different wide band filters (F115W, F200W, F356W), which improves the achieved spatial resolution compared to previous images taken with the Hubble Space Telescope by a factor of 2. We do not find any evidence for a foreground deflecting galaxy, nor for multiple images of the quasar, and determine the probability for magnification due to strong gravitational lensing with image separations below the diffraction limit of Δθ ≲ 0.″05 to be ≲2.2 × 10−3. Our observations therefore confirm that this quasar hosts a 10 billion solar mass black hole less than 1 Gyr after the Big Bang, which is challenging to explain with current black hole formation models.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3