A Study of the Spectral Properties of Two Gamma-Ray Bursts with the Main Bursts and Postbursts

Author:

Du Tan-Tan,Peng Zhao-YangORCID,Chen Jia-Ming,Li Ting,Yin Yue

Abstract

Abstract The jet composition in gamma-ray bursts (GRBs) is still an unsolved issue. We try to provide some clues to the issue by analyzing the spectral properties of GRB 160509A and GRB 130427A with a main burst and a postburst. We first perform Bayesian time-resolved spectral analysis and compare the spectral components and spectral properties of the main bursts and postbursts of the two bursts and find that both bursts have the thermal components, and the thermal components are mainly found in the main bursts, while the postbursts are mainly dominated by the nonthermal components. We also find that the low-energy spectral indices of some time bins in the main bursts of these two GRBs exceed the so-called synchronous dead line, and in the postburst, only GRB 160509A has four time bins exceeding the dead line, while none of GRB 130427A exceed the dead line. We then constrain the outflow properties of both bursts and find that the main bursts is consistent with the typical properties of photosphere radiation. Therefore, our results support the transition of the GRB jet component from the fireball to the Poynting-flux-dominated jet. Finally, after analyzing the correlation and parameter evolution of the spectral parameters of the two bursts, we find that the correlations of the spectral parameters have different behaviors in the main bursts and postbursts. The parameter evolution trends of the main bursts and postbursts also show consistent and inconsistent behavior; therefore, we currently cannot determine whether the main bursts and postbursts come from the same origin.

Funder

the National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3