The Effects of Starspots on Spectroscopic Mass Estimates of Low-mass Young Stars

Author:

Flores C.ORCID,Connelley M. S.ORCID,Reipurth B.ORCID,Duchêne G.ORCID

Abstract

Abstract Magnetic fields and mass accretion processes create dark and bright spots on the surface of young stars. These spots manifest as surface thermal inhomogeneities, which alter the global temperature measured on the stars. To understand the effects and implications of these starspots, we conducted a large iSHELL high-resolution infrared spectroscopic survey of T Tauri stars in Taurus-Auriga and Ophiuchus star-forming regions. From the K-band spectra, we measured stellar temperatures and magnetic field strengths using a magnetic radiative transfer code. We compared our infrared-derived parameters against literature optical temperatures and found (a) a systematic temperature difference between optical and infrared observations, and (b) a positive correlation between the magnetic field strengths and the temperature differences. The discrepant temperature measurements imply significant differences in the inferred stellar masses from stellar evolutionary models. To discern which temperature better predicts the mass of the star, we compared our model-derived masses against dynamical masses measured from Atacama Large Millimeter/submillimeter Array and the Plateau de Bure Interferometer for a subsample of our sources. From this comparison we conclude that, in the range of stellar masses from 0.3 to 1.3 M , neither infrared nor optical temperatures perfectly reproduce the stellar dynamical masses. But, on average, infrared temperatures produce more precise and accurate stellar masses than optical ones.

Funder

NASA Infrared Telescope Facility

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3