Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA

Author:

Appleton P. N.ORCID,Guillard P.ORCID,Emonts BjornORCID,Boulanger FrancoisORCID,Togi AdityaORCID,Reach William T.ORCID,Alatalo KathleenORCID,Cluver M.ORCID,Diaz Santos T.ORCID,Duc P.-A.ORCID,Gallagher S.ORCID,Ogle P.ORCID,O’Sullivan E.ORCID,Voggel K.ORCID,Xu C. K.ORCID

Abstract

Abstract We combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H2 line cooling across a 45 kpc-long filament, created by a giant shock wave, following the collision with an intruder galaxy, NGC 7318b. We demonstrate that the Mid-Infrared Instrument/F1000W/F770W filters are dominated by 0–0 S(3) H2 and a combination of polycyclic aromatic hydrocarbon and 0–0 S(5) H2 emission. These observations reveal the dissipation of kinetic energy as massive clouds experience collisions, interactions, and likely destruction/recycling within different phases of the IGM. In 1 kpc-scaled structure, warm H2 was seen to form a triangular-shaped head and tail of compressed and stripped gas behind a narrow shell of cold H2. In another region, two cold molecular clumps with very different velocities are connected by an arrow-shaped stream of warm, probably shocked, H2 suggesting a cloud–cloud collision is occurring. In both regions, a high warm-to-cold molecular gas fraction indicates that the cold clouds are being disrupted and converted into warm gas. We also map gas associated with an apparently forming dwarf galaxy. We suggest that the primary mechanism for exciting strong mid-IR H2 lines throughout Stephan’s Quintet is through a fog of warm gas created by the shattering of denser cold molecular clouds and mixing/recycling in the post-shocked gas. A full picture of the diverse kinematics and excitation of the warm H2 will require future JWST mid-IR spectroscopy. The current observations reveal the rich variety of ways that different gas phases can interact with one another.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3