HST Imaging of Star-forming Clumps in Six GASP Ram-pressure-stripped Galaxies

Author:

Giunchi EricORCID,Gullieuszik MarcoORCID,Poggianti Bianca M.ORCID,Moretti AlessiaORCID,Werle ArielORCID,Scarlata ClaudiaORCID,Zanella AnitaORCID,Vulcani BenedettaORCID,Calzetti DanielaORCID

Abstract

Abstract Exploiting broad- and narrowband images of the Hubble Space Telescope from the near-UV to I-band rest frame, we study the star-forming clumps of six galaxies of the GASP sample undergoing strong ram pressure stripping. Clumps are detected in Hα and near-UV, tracing star formation on different timescales. We consider clumps located in galaxy disks and stripped tails and formed in stripped gas but still close to the disk, called extraplanar. We detect 2406 Hα-selected clumps (1708 in disks, 375 in extraplanar regions, and 323 in tails) and 3745 UV-selected clumps (2021 disk, 825 extraplanar, and 899 tail clumps). Only ∼15% of star-forming clumps are spatially resolved, meaning that most are smaller than ∼140 pc. We study the luminosity and size distribution functions (LDFs and SDFs, respectively) and the luminosity–size relation. The average LDF slope is 1.79 ± 0.09, while the average SDF slope is 3.1 ± 0.5. The results suggest that the star formation is turbulence-driven and scale-free, as in main-sequence galaxies. All of the clumps, whether they are in the disks or tails, have an enhanced Hα luminosity at a given size, compared to the clumps in main-sequence galaxies. Indeed, their Hα luminosity is closer to that of clumps in starburst galaxies, indicating that ram pressure is able to enhance the luminosity. No striking differences are found among disk and tail clumps, suggesting that the different environments in which they are embedded play a minor role in influencing the star formation.

Funder

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3