The Cosmic Telescope That Lenses the Sunburst Arc, PSZ1 G311.65–18.48: Strong Gravitational Lensing Model and Source Plane Analysis*

Author:

Sharon KerenORCID,Mahler GuillaumeORCID,Rivera-Thorsen T. EmilORCID,Dahle HåkonORCID,Gladders Michael D.ORCID,Bayliss Matthew B.ORCID,Florian Michael K.ORCID,Kim Keunho J.ORCID,Khullar GouravORCID,Mainali RameshORCID,Napier Kate A.ORCID,Navarre AlexanderORCID,Rigby Jane R.ORCID,Remolina González Juan DavidORCID,Sharma SoniyaORCID

Abstract

Abstract We present a strong-lensing analysis of the cluster PSZ1 G311.65−18.48, based on Hubble Space Telescope imaging, archival VLT/MUSE spectroscopy, and Chandra X-ray data. This cool-core cluster (z = 0.443) lenses the brightest lensed galaxy known, dubbed the “Sunburst Arc” (z = 2.3703), a Lyman continuum (LyC) emitting galaxy multiply imaged 12 times. We identify in this field 14 additional strongly lensed galaxies to constrain a strong-lens model and report secure spectroscopic redshifts of four of them. We measure a projected cluster core mass of M(<250 kpc) = 2.93 0.02 + 0.01 × 10 14 M . The two least magnified but complete images of the Sunburst Arc’s source galaxy are magnified by ∼13×, while the LyC clump is magnified by ∼4–80×. We present time delay predictions and conclusive evidence that a discrepant clump in the Sunburst Arc, previously claimed to be a transient, is not variable, thus strengthening the hypothesis that it results from an exceptionally high magnification. A source plane reconstruction and analysis of the Sunburst Arc finds its physical size to be 1 × 2 kpc and that it is resolved in three distinct directions in the source plane, 0°, 40°, and 75° (east of north). We place an upper limit of r ≲ 50 pc on the source plane size of unresolved clumps and r ≲ 32 pc for the LyC clump. Finally, we report that the Sunburst Arc is likely in a system of two or more galaxies separated by ≲6 kpc in projection. Their interaction may drive star formation and could play a role in the mechanism responsible for the leaking LyC radiation.

Funder

Space Telescope Science Institute

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3