Abstract
Abstract
We examine the properties of spiral shocks from a steady, adiabatic, non-axisymmetric accretion disk around a compact star in a binary. We first incorporate all possible influences from a binary through adopting the Roche potential and Coriolis forces in the basic conservation equations. In this paper, we assume spiral shocks to be point-wise and self-similar, and that the flow is in vertical hydrostatic equilibrium to simplify the study. We also investigate mass outflow due to shock compression and apply it to an accreting white dwarf in a binary. We find that our model will be beneficial for overcoming the ad hoc assumption of an optically thick wind generally used in studies of the progenitors of supernovae Ia.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献