Unpacking Merger Jets: A Bayesian Analysis of GW170817, GW190425 and Electromagnetic Observations of Short Gamma-Ray Bursts

Author:

Hayes FergusORCID,Heng Ik SiongORCID,Lamb GavinORCID,Lin En-TzuORCID,Veitch JohnORCID,Williams Michael J.ORCID

Abstract

Abstract We present a novel fully Bayesian analysis to constrain short gamma-ray burst (sGRB) jet structures associated with cocoon, wide-angle, and simple top-hat jet models, as well as the binary neutron star (BNS) merger rate. These constraints are made given the distance and inclination information from GW170817, observed flux of GRB 170817A, observed rate of sGRBs detected by Swift, and the neutron star merger rate inferred from LIGO’s first and second observing runs. A separate analysis is conducted where a fitted sGRB luminosity function is included to provide further constraints. The jet structure models are further constrained using the observation of GW190425, and we find that the assumption that it produced a GRB 170817–like sGRB which went undetected due to the jet geometry is consistent with previous observations. We find and quantify evidence for low-luminosity and wide-angle jet structuring in the sGRB population, independently from afterglow observations, with log Bayes factors of 0.45–0.55 for such models when compared to a classical top-hat jet. Slight evidence is found for a Gaussian jet structure model over all others when the fitted luminosity function is provided, producing log Bayes factors of 0.25–0.9 ± 0.05 when compared to the other models. However, without considering GW190425 or the fitted luminosity function, the evidence favors a cocoon-like model with log Bayes factors of 0.14 ± 0.05 over the Gaussian jet structure. We provide new constraints to the BNS merger rates of 1–1300 Gpc−3 yr−1 or 2–680 Gpc−3 yr−1 when a fitted luminosity function is assumed.

Funder

UKRI ∣ Science and Technology Facilities Council

Royal Society

National Science and Technology Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3