Scaling of Ion Bulk Heating in Magnetic Reconnection Outflows for the High-Alfvén-speed and Low-β Regime in Earth’s Magnetotail

Author:

Øieroset M.ORCID,Phan T. D.ORCID,Drake J. F.ORCID,Starkey M.,Fuselier S. A.,Cohen I. J.ORCID,Haggerty C. C.ORCID,Shay M. A.ORCID,Oka M.ORCID,Gershman D. J.ORCID,Maheshwari K.,Burch J. L.ORCID,Torbert R. B.ORCID,Strangeway R. J.ORCID

Abstract

Abstract We survey 20 reconnection outflow events observed by Magnetospheric MultiScale in the low-β and high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of ion bulk heating produced by reconnection. The range of inflow Alfvén speeds (800–4000 km s−1) and inflow ion β (0.002–1) covered by this study is in a plasma regime that could be applicable to the solar corona and flare environments. We find that the observed ion heating increases with increasing inflow (upstream) Alfvén speed, V A, based on the reconnecting magnetic field and the upstream plasma density. However, ion heating does not increase linearly as a function of available magnetic energy per particle, m i V A 2 . Instead, the heating increases progressively less as m i V A 2 rises. This is in contrast to a previous study using the same data set, which found that electron heating in this high-Alfvén-speed and low-β regime scales linearly with m i V A 2 , with a scaling factor nearly identical to that found for the low-V A and high-β magnetopause. Consequently, the ion-to-electron heating ratio in reconnection exhausts decreases with increasing upstream V A, suggesting that the energy partition between ions and electrons in reconnection exhausts could be a function of the available magnetic energy per particle. Finally, we find that the observed difference in ion and electron heating scaling may be consistent with the predicted effects of a trapping potential in the exhaust, which enhances electron heating, but reduces ion heating.

Funder

NASA

NSF

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3