Early Planet Formation in Embedded Disks (eDisk). XIII. Aligned Disks with Nonsettled Dust around the Newly Resolved Class 0 Protobinary R CrA IRAS 32

Author:

Encalada Frankie J.ORCID,Looney Leslie W.ORCID,Takakuwa ShigehisaORCID,Tobin John J.ORCID,Ohashi NagayoshiORCID,Jørgensen Jes K.ORCID,Li Zhi-YunORCID,Aikawa YuriORCID,Aso YusukeORCID,Koch Patrick M.ORCID,Kwon WoojinORCID,Lai Shih-PingORCID,Lee Chang WonORCID,Lin Zhe-Yu DanielORCID,Santamaría-Miranda AlejandroORCID,de Gregorio-Monsalvo ItziarORCID,Phuong Nguyen ThiORCID,Plunkett AdeleORCID,Sai (Insa Choi) JinshiORCID,Sharma RajeebORCID,Yen Hsi-WeiORCID,Han IlseungORCID

Abstract

Abstract Young protostellar binary systems, with expected ages less than ∼105 yr, are little modified since birth, providing key clues to binary formation and evolution. We present a first look at the young, Class 0 binary protostellar system R CrA IRAS 32 from the Early Planet Formation in Embedded Disks ALMA large program, which observed the system in the 1.3 mm continuum emission, 12CO (2−1), 13CO (2−1), C18O (2−1), SO (65−54), and nine other molecular lines that trace disks, envelopes, shocks, and outflows. With a continuum resolution of ∼0.″03 (∼5 au, at a distance of 150 pc), we characterize the newly discovered binary system with a separation of 207 au, their circumstellar disks, and a circumbinary disklike structure. The circumstellar disk radii are 26.9 ± 0.3 and 22.8 ± 0.3 au for sources A and B, respectively, and their circumstellar disk dust masses are estimated as 22.5 ± 1.1 M and 12.4 ± 0.6 M , respectively. The circumstellar disks and the circumbinary structure have well-aligned position angles and inclinations, indicating formation in a smooth, ordered process such as disk fragmentation. In addition, the circumstellar disks have a near/far-side asymmetry in the continuum emission, suggesting that the dust has yet to settle into a thin layer near the midplane. Spectral analysis of CO isotopologues reveals outflows that originate from both of the sources and possibly from the circumbinary disklike structure. Furthermore, we detect Keplerian rotation in the 13CO isotopologues toward both circumstellar disks and likely Keplerian rotation in the circumbinary structure; the latter suggests that it is probably a circumbinary disk.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3