Bayesian Inference of Globular Cluster Properties Using Distribution Functions

Author:

Eadie Gwendolyn M.ORCID,Webb Jeremy J.,Rosenthal Jeffrey S.ORCID

Abstract

Abstract We present a Bayesian inference approach to estimating the cumulative mass profile and mean-squared velocity profile of a globular cluster (GC) given the spatial and kinematic information of its stars. Mock GCs with a range of sizes and concentrations are generated from lowered-isothermal dynamical models, from which we test the reliability of the Bayesian method to estimate model parameters through repeated statistical simulation. We find that given unbiased star samples, we are able to reconstruct the cluster parameters used to generate the mock cluster and the cluster’s cumulative mass and mean-squared velocity profiles with good accuracy. We further explore how strongly biased sampling, which could be the result of observing constraints, might affect this approach. Our tests indicate that if we instead have biased samples, then our estimates can be off in certain ways that are dependent on cluster morphology. Overall, our findings motivate obtaining samples of stars that are as unbiased as possible. This may be achieved by combining information from multiple telescopes (e.g., Hubble and Gaia), but will require careful modeling of the measurement uncertainties through a hierarchical model, which we plan to pursue in future work.

Funder

Government of Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical Bayesian inference of globular cluster properties;Monthly Notices of the Royal Astronomical Society;2023-11-09

2. Made-to-measure modelling of globular clusters;Monthly Notices of the Royal Astronomical Society;2023-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3