The Lyα Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter

Author:

Li Y.ORCID,Li QiaoORCID,Song De-ChaoORCID,Battaglia Andrea Francesco,Xiao Hualin,Krucker SämORCID,Schühle Udo,Li HuiORCID,Gan WeiqunORCID,Ding M. D.ORCID

Abstract

Abstract The hydrogen Lyα (H i Lyα) emission during solar flares has rarely been studied in spatially resolved images, and its physical origin has not been fully understood. In this paper, we present novel Lyα images for a C1.4 solar flare (SOL2021-08-20T22:00) from the Extreme Ultraviolet Imager aboard Solar Orbiter, together with multi-wave-band and multiperspective observations from the Solar Terrestrial Relations Observatory Ahead and the Solar Dynamics Observatory spacecraft. It is found that the Lyα emission has a good temporal correlation with the thermal emissions at 1–8 Å and 5–7 keV, indicating that the flaring Lyα is mainly produced by a thermal process in this small event. However, nonthermal electrons play a minor role in generating Lyα at flare ribbons during the rise phase of the flare, as revealed by the hard X-ray imaging and spectral fitting. Besides originating from flare ribbons, the Lyα emission can come from flare loops, likely caused by plasma heating and also cooling that happen in different flare phases. It is also found that the Lyα emission shows fairly similar features to the He ii λ304 emission in light curve and spatiotemporal variation, along with small differences. These observational results improve our understanding of the Lyα emission in solar flares and also provide some insights for investigating the Lyα emission in stellar flares.

Funder

NSFC

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3