The Effects of Nonequilibrium Velocity Distributions on Alfvén Ion-cyclotron Waves in the Solar Wind

Author:

Walters JadaORCID,Klein Kristopher G.ORCID,Lichko EmilyORCID,Stevens Michael L.ORCID,Verscharen DanielORCID,Chandran Benjamin D. G.ORCID

Abstract

Abstract In this work, we investigate how the complex structure found in solar wind proton velocity distribution functions (VDFs), rather than the commonly assumed two-component bi-Maxwellian structure, affects the onset and evolution of parallel-propagating microinstabilities. We use the Arbitrary Linear Plasma Solver, a numerical dispersion solver, to find the real frequencies and growth/damping rates of the Alfvén modes calculated for proton VDFs extracted from Wind spacecraft observations of the solar wind. We compare this wave behavior to that obtained by applying the same procedure to core-and-beam bi-Maxwellian fits of the Wind proton VDFs. We find several significant differences in the plasma waves obtained for the extracted data and bi-Maxwellian fits, including a strong dependence of the growth/damping rate on the shape of the VDF. By applying the quasilinear diffusion operator to these VDFs, we pinpoint resonantly interacting regions in velocity space where differences in VDF structure significantly affect the wave growth and damping rates. This demonstration of the sensitive dependence of Alfvén mode behavior on VDF structure may explain why the Alfvén ion-cyclotron instability thresholds predicted by linear theory for bi-Maxwellian models of solar wind proton background VDFs do not entirely constrain spacecraft observations of solar wind proton VDFs, such as those made by the Wind spacecraft.

Funder

NASA ∣ SMD ∣ Heliophysics Division

National Science Foundation

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3