Predicting the Spectroscopic Features of Galaxies by Applying Manifold Learning on Their Broadband Colors: Proof of Concept and Potential Applications for Euclid, Roman, and Rubin LSST

Author:

Jafariyazani MarziyeORCID,Masters DanielORCID,Faisst Andreas L.ORCID,Teplitz Harry I.ORCID,Ilbert OlivierORCID

Abstract

Abstract Entering the era of large-scale galaxy surveys, which will deliver unprecedented amounts of photometric and spectroscopic data, there is a growing need for more efficient, data-driven, and less model-dependent techniques to analyze the spectral energy distribution of galaxies. In this work, we demonstrate that by taking advantage of manifold learning approaches, we can estimate spectroscopic features of large samples of galaxies from their broadband photometry when spectroscopy is available only for a fraction of the sample. This will be done by applying the self-organizing map algorithm on broadband colors of galaxies and mapping partially available spectroscopic information into the trained maps. In this pilot study, we focus on estimating the 4000 Å break in a magnitude-limited sample of galaxies in the Cosmic Evolution Survey (COSMOS) field. We also examine this method to predict the Hδ A index given our available spectroscopic measurements. We use observed galaxy colors (u,g,r,i,z,Y,J,H), as well as spectroscopic measurements for a fraction of the sample from the LEGA-C and zCOSMOS spectroscopic surveys to estimate this feature for our parent photometric sample. We recover the D4000 feature for galaxies that only have broadband colors with uncertainties about twice the uncertainty of the employed spectroscopic surveys. Using these measurements, we observe a positive correlation between D4000 and the stellar mass of the galaxies in our sample with weaker D4000 features for higher-redshift galaxies at fixed stellar masses. These can be explained by the downsizing scenario for the formation of galaxies and the decrease in their specific star formation rate as well as the aging of their stellar populations over this time period.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3