White Dwarfs Revealed in Gaia’s Candidate Compact Object Binaries

Author:

Ganguly AnindyaORCID,Nayak Prasanta K.ORCID,Chatterjee SouravORCID

Abstract

Abstract Discovery and characterization of black holes (BHs), neutron stars (NSs), and white dwarfs (WDs) with detached luminous companions (LCs) in wide orbits are exciting because they are important test beds for dark remnant (DR) formation physics as well as binary stellar evolution models. Recently, 187 candidates have been identified from Gaia’s non-single star catalog as wide orbit (P orb/day > 45), detached binaries hosting DRs. We identify UV counterparts for 49 of these sources in the archival GALEX data. Modeling the observed spectral energy distribution (SED) spanning from the FUV-NUV to IR for these sources and stellar evolution models, we constrain the LC properties including mass, bolometric luminosity, and effective temperature for these 49 sources. Using the LC masses, and the astrometric mass function constrained by Gaia, we constrain the DR masses for these sources. We find that nine have masses clearly in the NS or BH mass range. Fifteen sources exhibit significant NUV excess and four show excess both in the FUV and NUV. The simplest explanation for these excess UV fluxes is that the DRs in these sources are WDs. Using SED modeling we constrain the effective temperature and bolometric luminosity for these 15 sources. Our estimated DR masses for all of these 15 sources are lower than the Chandrasekhar mass limit for WDs. Interestingly, five of these sources had been wrongly identified as NSs in the literature.

Funder

Department of Atomic Energy, Government of India

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hunting down white dwarf–main sequence binaries using multiwavelength observations;Monthly Notices of the Royal Astronomical Society;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3