Flares, Warps, Truncations, and Satellite: The Ultra-thin Galaxy UGC 11859

Author:

Ossa-Fuentes Luis,Borlaff Alejandro S.ORCID,Beckman John E.,Marcum Pamela M.,Fanelli Michael N.

Abstract

Abstract The structure of the outskirts of galaxies provides valuable information about their past and evolution. Due to their projected orientation, edge-on isolated galaxies effectively serve as test labs in which to study the three-dimensional structures of galaxies, including warps and flares, and to explore the possible sources of such distortions. We analyzed the structure of the apparently isolated edge-on ultra-thin galaxy UGC 11859 to look for the presence of distortions. The deep optical imaging observations ( μ lim = 30.6 and 30.0 mag arcsec 2 in the g- and r-bands, respectively) we acquired with the 10.4 m Gran Telescopio Canarias are used to derive the radial and vertical surface brightness profiles and gr color radial profile. We find that UGC 11859’s disk displays a significant gravitational distortion. A warp is clearly detected on one side of the disk, and the galactic plane on both sides of the center shows increasing scale height with an increasing galactocentric radius, indicating the presence of a flare in the stellar distribution. The surface brightness profile of the disk shows a sharp break at 24 kpc galactocentric radius, and a steep decline to larger radii, an “edge-on truncation,” which we associate with the presence of the flare. The present study is the first observational support for a connection between truncations and flares. Just beyond the warped side of the disk, a faint galaxy is observed within a small angular distance, identified as a potential interacting companion. Based on ultradeep g and r photometry we estimate that if the potential companion is at the same distance as UGC 11859, the stellar mass of the satellite galaxy is log10(M ) = 6.33 0.02 + 0.02 .

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3