Methanol Formation through Reaction of Low-energy CH3 + Ions with an Amorphous Solid Water Surface at Low Temperature

Author:

Nakai Y.ORCID,Sameera W. M. C.ORCID,Furuya K.ORCID,Hidaka H.ORCID,Ishibashi A.ORCID,Watanabe N.ORCID

Abstract

Abstract We have performed experimental investigations of methanol formation via the reactions of low-energy CH3 + ions with an amorphous solid water (ASW) surface at ∼10 K. A newly developed experimental apparatus enabled irradiation of the ASW surface by several eV ions and detection of trace amounts of reaction products on the surface. It was found that methanol molecules were produced by low-energy CH3 + irradiation of the ASW surface and that hydroxy groups in the produced methanol originated from water molecules in the ASW, as predicted in a previous theoretical study. Little temperature dependence of the observed methanol intensity is apparent in the temperature range 12–60 K. Ab initio molecular dynamics simulations under constant-temperature conditions of 10 K suggested that this reaction spontaneously produced a methanol molecule and an H3O+ ion, regardless of the contact point of CH3 + on the ASW surface. We have performed a simulation with an astrochemical model under molecular-cloud conditions, where the reaction between CH3 + and H2O ice, leading to methanol formation, was included. We found that the impact of the reaction on methanol abundance was limited only at the edge of the molecular cloud (<1 mag) because of the low abundance of CH3 + in the gas phase, whereas the reaction between the abundant molecular ion (HCO+) and H2O ice, which has not yet been confirmed experimentally, can considerably affect the abundance of a complex organic molecule. This work sheds light on a new type of reaction between molecular ions and ice surfaces that should be included in astrochemical models.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3