Observational Prospects of Double Neutron Star Mergers and Their Multimessenger Afterglows: LIGO Discovery Power, Event Rates, and Diversity

Author:

Aghaei Abchouyeh MaryamORCID,van Putten Maurice H. P. M.ORCID,Amati LorenzoORCID

Abstract

Abstract The double neutron star (DNS) merger event GW170817 signifies the first multimessenger (MM) event with electromagnetic-gravitational (EM-GW) observations. LIGO-Virgo-KAGRA observational runs O4-5 promise to detect similar events and as yet unknown GW signals, which require confirmation in two or more detectors with comparable performance. To this end, we quantify duty cycles of comparable science quality of data in coincident H1L1-observations, further to seek consistent event rates of astrophysical transients in upcoming EM-GW surveys. Quite generally, discovery power scales with exposure time, sensitivity, and critically depends on the percentage of time when detectors operate at high quality. We quantify coincident duty cycles over a time-frequency domain W × B, defined by segments of duration W = 8 s, motivated by a long-duration descending GW-chirp during GRB170817A, and the minimum detector noise over about B = 100–250 Hz. This detector yield factor satisfies 1%–25% in S5-6 and O1-O3ab, significantly different from duty cycles of H1 and L1 individually with commensurable impact on consistency in event rates in EM-GW surveys. Significant gain in discovery power for signals whose frequency varies slowly in time may be derived from improving detector yield factors by deploying time-symmetric data analysis methods. For O4-5, these can yield improvements by factors up to ( 10 5 ) relative to existing data and methods. Furthermore, the diversity of MM afterglows to DNS mergers may be greatest for systems similar to GW170817 but possibly less so for systems of substantially different mass such as GW190425. We summarize our findings with an outlook on EM-GW surveys during O4-5 and perspectives for next-generation GRB missions like THESEUS.

Funder

National Research Foundation of Korea

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3