Super-Earth Formation with Slow Migration from a Ring in an Evolving Peaked Disk Compatible with Terrestrial Planet Formation

Author:

Ogihara MasahiroORCID,Morbidelli AlessandroORCID,Kunitomo MasanobuORCID

Abstract

Abstract For the origin of the radially concentrated solar system’s terrestrial planets, planet formation from a ring of solids at about 1 au from the Sun with convergent/suppressed type I migration is preferred. On the other hand, many super-Earths and sub-Neptunes are found in the close-in region with orbital periods of 10–100 days, so that planet formation from rings in the 1 au region would require some degree of inward migration. One way to realize these different formation scenarios is to use different gas disk models. In this study, we investigate whether different scenarios can be realized within a single framework. We consider a disk model that evolves via disk winds and develops a density peak, and study planet formation and orbital evolution using N-body simulations. Planets with masses less than an Earth mass formed from a low-mass ring resembling the solar system do not migrate inward even in the evolving disk and remain near 1 au orbits, maintaining a high radial mass concentration. On the other hand, planets with masses greater than an Earth mass formed from a massive ring slowly migrate inward above the outward migration region. As a result, the innermost planet can move to an orbit of about 10 days. The simulation results also reproduce the characteristics (e.g., mass distribution, eccentricity, orbital separation) of the solar system and super-Earth/sub-Neptune systems. Our model predicts that Earths and sub-Earths formed by migration from rings near the 1 au region are less abundant in the close-in region.

Funder

MOST ∣ National Natural Science Foundation of China

EC ∣ European Research Council

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3