Persistent Homology Analysis for Solar Magnetograms

Author:

Santamarina Guerrero P.ORCID,Katsukawa YukioORCID,Toriumi ShinORCID,Orozco Suárez D.ORCID

Abstract

Abstract Understanding the magnetic fields of the Sun is essential for unraveling the underlying mechanisms driving solar activity. Integrating topological data analysis techniques into these investigations can provide valuable insights into the intricate structures of magnetic fields, enhancing our comprehension of solar activity and its implications. In this study, we explore what persistent homology can offer in the analysis of solar magnetograms, with the objective of introducing a novel tool that will serve as the foundation for further studies of magnetic structures at the solar surface. By combining various filtration methods of the persistent homology analysis, we conduct an analysis of solar magnetograms that captures the broad magnetic scene, involving a mixture of positive and negative polarities. This analysis is applied to observations of both quiet-Sun and active regions, taken with the Hinode/Solar Optical Telescope and SDO/Helioseismic and Magnetic Imager, respectively. Our primary focus is on analyzing the properties of the spatial structures and features of the magnetic fields identified through these techniques. The results show that persistent diagrams can encode the spatial structural complexity of the magnetic flux of active regions by identifying the isolated, connected, and interacting features. They facilitate the classification of active regions based on their morphology and the detection and quantification of interacting structures of opposing polarities, such as δ spots. The small-scale events in the quiet Sun, such as magnetic flux cancellation and emergence, are also revealed in persistent diagrams and can be studied by observing the evolution of the plots and tracking the relevant features.

Funder

MEC ∣ Agencia Estatal de Investigación

EC ∣ European Regional Development Fund

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3