Asphericity of the Base of the Solar Convection Zone

Author:

Basu SarbaniORCID,Korzennik Sylvain G.ORCID

Abstract

Abstract We have used solar oscillation frequencies and frequency splittings obtained over solar cycles 23 and 24 to investigate whether the base of the solar convection zone shows any departure from spherical symmetry. We used the even-order splitting coefficients, a 2a 8, and estimated the contributions from each one separately. The average asphericity over the two solar cycles was determined using frequencies and splittings obtained with a 9216-day time series. We find that evidence of asphericity is, at best, marginal: the a 2 component is consistent with no asphericity, the a 4 and a 6 components yield results at a level a little greater than 1σ, while the a 8 component shows a signature below 1σ. The combined results indicate that the time average of the departure from the spherically symmetric position of the base of the convection zone is ≲0.0001R . We have also used helioseismic data obtained from time series of lengths of 360, 576, 1152, and 2304 days in order to examine the consistency of the results and evaluate whether there is any time variation. We find that the evidence for time variation is statistically marginal in all cases, except for the a 6 component, for which tests consistently yield p-values of less than 0.05.

Funder

NASA ∣ SMD ∣ Heliophysics Division

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3