The Source of Leaking Ionizing Photons from Haro11: Clues from HST/COS Spectroscopy of Knots A, B, and C*

Author:

Östlin GöranORCID,Rivera-Thorsen T. EmilORCID,Menacho Veronica,Hayes MatthewORCID,Runnholm AxelORCID,Micheva GenovevaORCID,Oey M. S.ORCID,Adamo AngelaORCID,Bik ArjanORCID,Cannon John M.ORCID,Gronke MaxORCID,Kunth DanielORCID,Laursen PeterORCID,Mas-Hesse J. MiguelORCID,Melinder JensORCID,Messa MatteoORCID,Sirressi MattiaORCID,Smith LindaORCID

Abstract

Abstract Understanding the escape of ionizing (Lyman continuum) photons from galaxies is vital for determining how galaxies contributed to reionization in the early universe. While directly detecting the Lyman continuum from high-redshift galaxies is impossible due to the intergalactic medium, low-redshift galaxies in principle offer this possibility but require observations from space. The first local galaxy for which Lyman continuum escape was found is Haro 11, a luminous blue compact galaxy at z = 0.02, where observations with the FUSE satellite revealed an escape fraction of 3.3%. However, the FUSE aperture covers the entire galaxy, and it is not clear from where the Lyman continuum is leaking out. Here we utilize Hubble Space Telescope/Cosmic Origins Spectrograph spectroscopy in the wavelength range 1100–1700 Å of the three knots (A, B, and C) of Haro 11 to study the presence of Lyα emission and the properties of intervening gas. We find that all knots have bright Lyα emission. UV absorption lines, originating in the neutral interstellar medium, as well as lines probing the ionized medium, are seen extending to blueshifted velocities of 500 km s−1 in all three knots, demonstrating the presence of an outflowing multiphase medium. We find that knots A and B have large covering fractions of neutral gas, making LyC escape along these sightlines improbable, while knot C has a much lower covering fraction (≲50%). Knot C also has the the highest Lyα escape fraction, and we conclude that it is the most likely source of the escaping Lyman continuum detected in Haro 11.

Funder

Vetenskapsrådet

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3