Stellar Initial Mass Function (IMF) Probed with Supernova Rates and Neutrino Background: Cosmic-average IMF Slope Is ≃2–3 Similar to the Salpeter IMF

Author:

Aoyama ShoheiORCID,Ouchi MasamiORCID,Harikane YuichiORCID

Abstract

Abstract The stellar initial mass function (IMF) is expressed by ϕ(m) ∝ m α with the slope α, and known as a poorly constrained but very important function in studies of star and galaxy formation. There are no sensible observational constraints on the IMF slopes beyond the Milky Way and nearby galaxies. Here we combine two sets of observational results, (1) cosmic densities of core-collapse supernova (CCSN) explosion rates and (2) cosmic far-UV radiation (and infrared reradiation) densities, which are sensitive to massive (≃8–50 M ) and moderately massive (≃2.5–7 M ) stars, respectively, and constrain the IMF slope at m > 1 M with a freedom of redshift evolution. Although no redshift evolution is identified beyond the uncertainties, we find that the cosmic-average IMF slope at z = 0 is α = 1.8–3.2 at the 95% confidence level that is comparable with the Salpeter IMF, α = 2.35, which marks the first constraint on the cosmic-average IMF. We show a forecast for the Nancy Grace Roman Space Telescope supernova survey that will provide significantly strong constraints on the IMF slope with δ α ≃ 0.5 over z = 0–2. Moreover, as for an independent IMF probe instead of (1), we suggest to use diffuse supernovae neutrino background (DSNB), relic neutrinos from CCSNe. We expect that the Hyper-Kamiokande neutrino observations over 20 yr will improve the constraints on the IMF slope and the redshift evolution significantly better than those obtained today, if the systematic uncertainties of DSNB production physics are reduced in the future numerical simulations.

Funder

KAKENHI Grand-in-Aid for Scientific Research

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3