X-Ray Constraints on the Hot Gaseous Corona of Edge-on Late-type Galaxies in Virgo

Author:

Hou MeicunORCID,He LinORCID,Hu ZhensongORCID,Li ZhiyuanORCID,Jones ChristineORCID,Forman WilliamORCID,Su YuanyuanORCID,Wang JingORCID,Ho Luis C.ORCID

Abstract

Abstract We present a systematic study of the putative hot gas corona around late-type galaxies (LTGs) residing in the Virgo cluster, based on archival Chandra observations. Our sample consists of 21 nearly edge-on galaxies representing a range of star formation rate (SFR) of 0.2–3 M yr−1 and a range of stellar mass (M *) of (0.2–10) × 1010 M , the majority of which have not been explored with high-sensitivity X-ray observations so far. Significant extraplanar diffuse X-ray (0.5–2 keV) emission is detected in only three LTGs, which are also the three galaxies with the highest SFR. A stacking analysis is performed for the remaining galaxies without individual detection, dividing the whole sample into two subsets based on SFR, stellar mass, or specific SFR. Only the high-SFR bin yields a significant detection, which has a value of L X ∼ 3 × 1038 erg s−1 per galaxy. The stacked extraplanar X-ray signals of the Virgo LTGs are consistent with the empirical L X–SFR and L XM * relations found among highly inclined disk galaxies in the field, but appear to be systematically lower than those of a comparison sample of simulated star-forming galaxies in clusters identified from the Illustris-TNG100 simulation. The apparent paucity of hot gas coronae in the sampled Virgo LTGs might be understood as the net outcome of the long-lasting effect of ram pressure stripping exerted by the hot intracluster medium and in-disk star-forming activity acting on shorter timescales. A better understanding of the roles of environmental effects in regulating the hot gas content of cluster galaxies invites sensitive X-ray observations for a large sample of galaxies.

Funder

MOST ∣ National Natural Science Foundation of China

China Postdoctoral Foundation Project ∣ National Postdoctoral Program for Innovative Talents

MOST ∣ National Key Research and Development Program of China

Smithsonian Institution

National Aeronautics and Space Administration

China Manned Space Project

Publisher

American Astronomical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3