Abstract
Abstract
Observations of ionized outflows from active galactic nuclei (AGNs) provide evidence of energy and momentum transfer from the AGN radiation to the plasma. The AGN radiation is very energetic. Therefore, at distances of parsec scale, where gravity is relatively weak, energy transfer alone can lead to outflow. Much closer to the black hole, gravity dominates thermal energy and the gas is in the so-called “cold” regime. Only magnetic or radiation forces can lead to outflow. However, it is unclear when the radiation force is efficient in overcoming gravity because of its dependence on the spectral energy distribution (SED) of the radiation and opacity. In this work, we survey the parameter space of radiation forces due to spectral lines resulting from blackbody SEDs with temperatures ranging from ∼104 to 106 K. The objective was to identify the radiation temperature above which line driving becomes inefficient. We find that the temperature ≲4 × 105 K marks such a transition. We also self-consistently calculate heating and cooling balance to estimate gas temperature and identify the transition where thermal driving becomes comparable to line driving. We summarize hydrodynamical simulations of radial outflows to illustrate how wind properties change during the transition from line to thermal driving and their dependence on outflow parameters and SED.
Publisher
American Astronomical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Time-dependent AGN disc winds – I. X-ray irradiation;Monthly Notices of the Royal Astronomical Society;2024-04-30