An Improved Technique for Measuring Plasma Density to High Frequencies on the Parker Solar Probe

Author:

Mozer F. S.ORCID,Bale S. D.ORCID,Kellogg P. J.ORCID,Larson D.ORCID,Livi R.ORCID,Romeo O.ORCID

Abstract

Abstract The correlation between the plasma density measured in space and the surface potential of an electrically conducting satellite body with biased electric field detectors has been recognized and used to provide density proxies. However, for Parker Solar Probe, this correlation has not produced quantitative density estimates over extended periods of time because it depends on the energy-dependent exponential variation of the photoemission spectrum, the electron temperature, the ratio of the biased surface area to the conducting spacecraft surface area, the spacecraft secondary or thermal emission, the spacecraft distance from the Sun, etc. In this paper the density as a function of time and frequency to frequencies as high as the electron gyrofrequency is determined through least-squares fits of a function of the spacecraft potential to the plasma density measured on the Parker Solar Probe. This function allows correction for the many effects on the spacecraft potential other than that due to the plasma density. Some examples of plasma density obtained from this procedure are presented.

Funder

NASA ∣ GSFC ∣ Astrophysics Science Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3