Abstract
Abstract
Magnetohydrodynamic turbulence drives the central engine of post-merger remnants, potentially powering both a nucleosynthetically active disk wind and the relativistic jet behind a short gamma-ray burst. We explore the impact of the magnetic field on this engine by simulating three post-merger black hole accretion disks using general relativistic magnetohydrodynamics with Monte Carlo neutrino transport, in each case varying the initial magnetic field strength. We find increasing ejecta masses associated with increasing magnetic field strength. We find that a fairly robust main r-process pattern is produced in all three cases, scaled by the ejected mass. Changing the initial magnetic field strength has a considerable effect on the geometry of the outflow and hints at complex central engine dynamics influencing lanthanide outflows. We find that actinide production is especially sensitive to magnetic field strength, with the overall actinide mass fraction calculated at 1 Gyr post-merger increasing by more than a factor of 6 with a tenfold increase in magnetic field strength. This hints at a possible connection to the variability in actinide enhancements exhibited by metal-poor, r-process-enhanced stars.
Funder
U.S. Department of Energy
DOE ∣ NNSA ∣ LDRD ∣ Los Alamos National Laboratory
National Science Foundation
Publisher
American Astronomical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献