Nature of Intense Magnetism and Differential Rotation in Convective Dynamos of M-dwarf Stars with Tachoclines

Author:

Bice Connor P.ORCID,Toomre JuriORCID

Abstract

Abstract Many of the M-dwarf stars, though they are tiny and dim, are observed to possess strong surface magnetic fields and exhibit remarkably intense flaring. Such magnetism may severely impact habitability on the exoplanets now discovered nearby. The origin of the magnetism must rest with dynamo action achieved by turbulent convection coupled to rotation within the M-dwarfs. To further explore the nature and diversity of the magnetism that can result, we turn here to an extensive set of 45 global MHD simulations to explore dynamos operating within deep convective envelopes of rapidly rotating M2 (0.4 M ) stars. We observe a wide range of cycle periods present in the convection zones, whose durations we find to scale with the Rossby number as Ro−1.66±0.07 in concurrence with scalings identified in simulations of more massive stars. We find a unifying relationship between the ratio of magnetic to convective kinetic energy (ME/CKE) and the degree to which the differential rotation is quenched by magnetic fields. We show that the presence of a tachocline in these model stars enhances their axisymmetric magnetic field components, leading to a surface dipole fraction on average 78% greater than an equivalent star with only a CZ, potentially shedding light on the nature of the tachocline divide through resultant effects on the spin-down rate.

Funder

NASA ATP

NASA FINESST

NASA Heliophysics

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3