Searching for Dwarf Hα Emission-line Galaxies within Voids. I. Survey Methods and First Observations

Author:

Draper Christian D.ORCID,Moody J. WardORCID,McNeil Stephen R.ORCID,Joner Michael D.ORCID,Steele RochelleORCID,Steele JacksonORCID

Abstract

Abstract The population density of dwarf galaxies in low-density voids is likely determined by the dark matter halo mass function and how galaxy formation proceeds in smaller halos. This depends on the nature of dark matter itself, making the dwarf galaxy population a tracer of its properties. While dwarfs have been found in smaller, closer voids, they have proven difficult to find in larger, more distant voids through magnitude-limited spectroscopic surveys. This is because these surveys detect an overwhelmingly large number of objects behind the voids that must be verified spectroscopically, making void surveys prohibitively inefficient and expensive in terms of large-telescope time. Narrowband imaging for emission lines such as Hα reduces the number of background objects, although the overall number remains large. If imaging is done through a filter set with overlapping transmission wings, then object redshift can be estimated from photometry alone. The precision possible is an order of magnitude greater than single-band photometry, with the caveat that the captured line must be identified through other means. Broadband photometry can be used to reject enough objects with emission of an unwanted type to make obtaining spectra of the remaining objects feasible. In this study, we present an Hα survey for dwarf galaxies with M r ′ fainter than −14 mag through the center 4.3 square degrees of the void FN8. Using Sloan g , r , i photometry, we exclude enough [O ii] and [O iii] emitters that follow-up spectra of only a few dozen objects are required to statistically estimate the void population density.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3