Exploring the Substructure of the Near-surface Shear Layer of the Sun

Author:

Rabello Soares M. CristinaORCID,Basu SarbaniORCID,Bogart Richard S.ORCID

Abstract

Abstract The gradient of rotation in the near-surface shear layer (NSSL) of the Sun provides valuable insights into the dynamics associated with the solar activity cycle and the dynamo. Results obtained with global oscillation mode splittings lack resolution near the surface, prompting the use of the local helioseismic ring-diagram method. While the Helioseismic and Magnetic Imager ring-analysis pipeline has been used previously for analyzing this layer, default pipeline parameters limit the accuracy of the near-surface gradients. To address these challenges, we fitted the flow parameters to power spectra averaged over one-year periods at each location, followed by additional averaging over 12 yr. We find that the NSSL can be divided into three fairly distinct regions: a deeper, larger region with a small shear, steepening toward the surface; a narrow middle layer with a strong shear, with a gradient approximately 3 times larger; and a layer very close to the surface, where the logarithmic gradient is close to zero but becomes steeper again toward the surface. The middle layer appears to be centered at 3 Mm, but the poor resolution in these layers implies that it is potentially located closer to the surface, around 1.5 Mm deep. While our analysis primarily focused on regions along the central meridian, we also investigated systematic errors at longitudes off the center. The east–west antisymmetric component of the gradient reveals a layer of substantial differences between the east and west longitude of around 1.7 Mm, and the amplitude of the differences increases with the longitude.

Funder

NASA HMI

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3